
String Hash algorithms
Louis vd Walt



Applications of string 
hashing

• Cryptography and passwords

• Hashmaps

• Filesystems

• Databases

• Checksums

• Pattern matching



We’ll be taking a look at 
algorithms for Hashmaps and 
pattern matching



Why something other than std::hash()?

• 9/10 times you’ll be better off using std::hash.
• std::hash most likely uses intrinsic instructions

• std::hash is highly optimised over many years by experienced developers

• Chosen for best balance between speed and collision frequency

• For the other 10%
• You need something faster

• You need something specialised to a certain use case

• std::hash’s implementation is opaque and you need specific results



Algorithm 1: 
Basic string cast
• If strings <= 8 chars

• Might need padding up to 8 chars

• Time complexity: O(1)

• Ease of remembering: 5/5

• Speed compared to std::hash(): 
Super fast

• Collisions: none



Algorithm 2: 
Basic Cast+XOR
• Modification of previous function

• Needs padded strings up to nearest 
multiple of 8

• Time complexity: O(n)

• Ease of remembering: 5/5

• Speed compared to std::hash(): 
Common implementation of 
std::hash

• Collisions: 3/5



Algorithm 3: 
Common Rabin-
Karp hash
• Type of rolling hash

• Next value can be computed from 
previous

• Time complexity: O(n) (Hash only)

• Ease of remembering: 5/5

• Speed compared to std::hash: More or less 
the same

• Collisions: 1/5



Rabin-Karp Hash Explained

• Let p = 101(or other prime) and b = 255

• Let num(x) = integer value of char

• ℎ𝑎𝑠ℎ ′𝑠𝑡𝑟′ = 𝑛𝑢𝑚 ′𝑠′ ∗ 𝑏2 + 𝑛𝑢𝑚 ′𝑡′ ∗ 𝑏1 + 𝑛𝑢𝑚 ′𝑠′ ∗ 𝑏1(mod 
p)

• 𝑛𝑢𝑚 ′𝑠′ ∗ 𝑏1 + 𝑛𝑢𝑚 ′𝑡′ ∗ 𝑏0 ∗ b − 𝑛𝑢𝑚 ′𝑠′ ∗ 𝑏1



Example: Rabin-Karp pattern 
searching



Example question

Given a string a of length n, and a string b of length m, determine the 
number of occurrences of b as a substring in a where m < n-1.



Basic solution in O(nm)

• Loop over string a

• At current position check for a match with b

• If found print position

• Continue to find all occurrences



Basic solution in O(nm)



Rabin-Karp in O(n+m) (best) O(nm) (worst)

• Compute the hash of string b and string a up to len m.

• Go through string a char by char
• Check if hash matches

• Check match char by char

• Print match

• Recalculate hash
• Remove first letter

• Times base

• Add next letter



Rabin-Karp in O(n+m) (best) O(nm) (worst)



Questions?


